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In the papers [1], [2] the model of the graphite crystal lattice with the pair moment interaction between atoms is proposed. Here for this lattice by numerical experiments the elastic potential and the acoustic tensor for arbitrary large initial extension-compression and shear deformations are found. These elastic properties are compared with the theoretical ones [1]. The limits of the material stability are established for arbitrary initial deformations. 

Some kinds of atoms motion are investigated numerically.
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Introduction
In the last years the large attention is paid to investigations of the nano-structures properties, especially of their mechanical properties. As a preliminary step of the nano-tubes investigation in this work the mechanical properties of a plane graphite layer are studied. This problem allows the generalization to the 3D case. The graphite lattice is the lattice with the low density of particles. This lattice has the symmetry of third order, namely it remains the same after rotation at the angle 
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 with respect to any particle of lattice. Here the lattice model based on the pair moment potential introduced in Ref. [1], [2] is studied.
1.  The two-body potential 
The two-body moment potential (Ref. [1], [2]) has the form
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where 
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 are given. The value 
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 is connected with the atom-scale distance, and the values
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are connected with the energy of interaction. The angles  k and 
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 satisfy to relations
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and r is the distance between atoms. In Figure 1 the angles 
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in potential (1) are presented. Therefore, the each particle position is defined by its radius-vector and its angle orientation. Each particle is symmetric with respect to rotation at the angle 
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Figure 1: Two atoms: a) the actual position, b) the stable position of equilibrium
The constants 
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were found analytically in [1] by the following way. For potential (1) stiffness parameters 
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are found analytically and then they are compared with the known parameters (atom-scale): the distance between the atoms and the modules 
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The known parameters of the graphite lattice layer are (Ref. [1])
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Therefore the obtained values
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describe the graphite lattice layer model with the cut-radius 
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2 The stress-strain state of the graphite crystal lattice
The lattice consisting of right hexagons corresponds to given moment potential (1) (see Figure 4) where each particle has three nearest neighbors. In the non-deformed state the length of the hexagon side is equal to
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2.1 The elastic modulus

Let us introduce the elastic tensor 
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 EMBED Equation.3  [image: image19.wmf]
Let U be the potential energy per unit of area before deformation. The material stiffness 
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 at the extension in x-direction may be approximately calculated numerically by the relation
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The value of the equilibrium distance between atoms in dependence on the cut-radius 
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 is found (see Table 1 where n is the number of atoms for which the interaction with given atom is taken into consideration).
Table 1: The equilibrium distance between atoms as a function of the cut-radius
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The stiffness parameters  
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 and  
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 are found numerically for various values
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                    (8)
Comparison of values (5) and (8) for n=3 shows their good agreement.
2.2 The non-linear deformations  
Now we study the affine lattice deformation in general case described by tensor

(7) and find stiffness matrix. The hexagon positions in initial and in actual states are is shown in Figure 2. 
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Figure 2: The deformation of lattice. Initial and actual configuration

Parameters
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describe the lattice deformation. Namely values 
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 describe the atoms positions. Value
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 is the angle of atom rotation around axis z. Angle 
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 in the equilibrium state due to symmetry is identical for all atoms.
Deformations (7) are connected with the values  
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 by the relations
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Let deformations (7) are given. Values 
[image: image46.wmf]5

4

3

,

,

a

a

a

 may be expressed through these deformations and values
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is determined in the 3D space as the function of parameters  
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. We find numerically values of these parameters from the condition that function (11) is minimal in the 3D space of these parameters. The last calculation is necessary with the following reason. This lattice is not simple, it have atoms of two types. In Figures 1b, 2 they are presented by the triangles with different orientation. The relative positions of two types of atoms in deformed lattice nonlinearly depend on deformations (7) for any small deformation. Positions of points and angle 
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 are to be found from the equations of equilibrium which are equivalent to the condition that function (11) is minimal.
2.3 The critical deformations 
If deformations (7) are large enough then the lattice loses its stability.  The lost of stability has place if the stiffness tensor stops to be positively definite. The numerical calculations are fulfilled, and the critical deformations 
[image: image51.wmf]y

x

e

e

+

+

1

,

1

 for which lattice model loses its stability are found. The boundary of the stable area is shown in Figure 3.
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 Figure 3: The critical strain diagram for graphite layer

3 Dynamic problems
3.1 Dynamics. The growth of atom lattice
The motion of n atoms under action of inter-atomic forces and moments is described by the system of 6n-th order
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The forces and moments (see Fig. 1) at the right side of equations (12) are equal to (Ref. [1], [2])
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In equation (12) m is the mass of atoms,  J  is its inertia moment with respect to axis z. The summands with multipliers 
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 and 
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 describe friction which is introduced to find the equilibrium position. We accept the following values of these parameters
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We accept the following initial conditions of the first dynamical problem. At the first time we have a single atom. Then after time intervals which are large enough to reach the equilibrium state, the next atoms consequently join to the system in various places at the distance 
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 from the edge of system. In Figure 4 the final position of the lattice of 64 atoms obtained by such a way is shown. It is easy to see some hexagons but pentagons and heptagons also are present.
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Figure 4: The growth of atom lattice

3.2 The dynamics of atom lattice 
The next experiment consists of the investigation of dynamics of preliminary three-angle lattice under action of small random impulses. Then system (12) accepts the form
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The summands 
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are small random impulses equal to
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Here 
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 are the independent random numbers with standard normal distribution 
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. In Figure 5 the initial configuration and the final configuration obtained from system (15)-(16) are shown. The final configuration is the hexagonal lattice with defects.
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Figure 5: The transformation of atom lattice. Initial and final configuration

Conclusion

The analytical results for the model of the graphite lattice are supported numerically. Some problems for atoms motion are solved numerically. They allow us to simulate processes of lattice growth and reconstruction.
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